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Abstract A Steerable in-pipe inspection robot is designed
in this paper and its optimal control based on linear
quadratic regulator (LQR) approach is performed subject
to input minimization. In-pipe inspection robots are nec-
essary mobile robots in order to investigate the pipelines.
Most of the in-pipe inspection robots are limited to move
with a constant pitch rate. An in pipe inspection robot is
proposed in this paper which is based on screw locomo-
tion and its steering angle is also controllable in order to
handle the pitch rate of the movement and bypass the prob-
able obstacles. Since the proposed robot is multivariable
with more than one controlling input, minimizing its con-
trol inputs are extremely useful. The goal of this paper is to
extract the dynamic model of the mentioned steerable screw
in-pipe inspection robot and controlling it within a prede-
fined trajectory in an optimal way. The proper mechanism is
designed and its related kinematics and kinetics are derived.
Afterwards the objective function is defined based on min-
imizing the controlling input and maximizing the accuracy
of movement. The nonlinear state space is linearized around
its operating point and optimization is implemented using
Linear Quadratic Regulator (LQR). The efficiency of the
designed robot and controller and the optimality of its con-
trolling procedure are investigated by the aid of MATLAB
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simulation and comparative analysis. It is proved that the
designed robot is able to move with controllable pitch rate
and acceptable accuracy while the obstacles can be avoided
and the energy consumption is optimized. At the end the
validity of modeling and simulation inMATLAB is also ver-
ified by modeling the robot in ADAMS and comparing the
results.
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Obstacle avoidance · Optimal control · LQR

1 Introduction

Mobile Robots are nowadays extremely important in indus-
tries in order to manage investigations, repairs, manipu-
lations and other functions. In recent years, a significant
volume of researches has been focused on improvement
of the mobile robots and lots of approaches are proposed
for tracking and controlling of these kinds of robots. Peng
et al. [1] investigated the adaptive distributed formation con-
trol problem for multiple non-holonomic wheeled mobile
robots. Scaglia et al. [2] studied the problem of mobile
robots under uncertainties. Although the mobility of these
kind of robots is high and their ability to do a variety of tasks
is increased, however these kinds of robots are not appro-
priate for moving through the pipe lines since they cannot
remain stable in the pipes especially during steering peri-
ods. So researchers have promoted the design of the mobile
robots in order to increase their ability to move through the
pipes and investigate the lines.

The new generation of robots are more suitable in order
to investigate the internal space of the pipes and detect
the cracks, leaks, and implement on destructive tests on
them. These kinds of robots are called In-Pipe Inspection
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Robots(IPIRs) and they are divided into three categories.
1) Without wheel robots. 2) Caterpillar robots. 3) Wheeled
robots and all of these groups are also divided into some
subgroups. Numerous types of in pipe robots have been
designed so far. Takahashi et al. [3] designed a robot based
on earthworm motion that is composed of three locomo-
tive units. Zagler and Pfeiffer [4] designed a leg type robot
(MORITZ) which could climb through pipes with different
rate of inclinations. These kinds of robots were too slow, so
new generation of these robots were developed with wheel
and caterpillar. Kim et al. [5] designed a caterpillar robot
(wall pressed type) to provide a good friction force between
the robot and pipes. This robot is able to climb through verti-
cal pipes as a result of its wall pressed mechanism. Recently,
variety types of caterpillar in-pipe inspection robots are
designed. Harish and Venkateswarlu [6] designed a robot
with caterpillar wheels which consists a CMOS camera,
an accelerometer, a temperature sensor and a ZigBee mod-
ule. Also the kinematics of the robot is considered in this
paper. Caterpillar robots provides stronger propulsion fric-
tion compared to wheeled based ones. Suzumori et al. [7]
developed a micro inspection robot for an in pipes robot
equipped by a high-quality micro charge-coupled device
(CCD) camera and a dual hand for manipulating small
objects in the pipes. Despite of good maneuverability of
caterpillar robots as a result of their acceptable rate of
friction, their stability and adaptability respect to different
pipeline geometrical shapes is not good. Wheeled based in
pipe robots seems to be better solution to deal with the men-
tioned challenge. Zhang and Yan [8] designed a wheeled
robot with active pipe-diameter adaptability. They modeled
the system and extracted the differential equations. After-
ward, the robot is controlled using PD and PID controllers.
Roh and Choi [9] proposed a wheeled wall press in-pipe
robot with a miniature differential-drive. The mechanism
of differential-drive is designed considering steer ability to
increase the adaptability of the robot with any pipeline con-
figurations. Wheeled robots with wall press mechanism are
so useful to increase the adaptability of the robot respect
to the pipe shape, but screw drive mechanism of locomo-
tion [10] provides a more optimal mechanism with lower
cost and equipment for practical applications. Shugen Ma
et al. [11] designed a multifunction in-pipe inspection robot
equipped with one driving motor that is the main body
of Multifunctional Mobile Unit (MMU1) that performs
inspection tasks. They developed three kinds of MMU by
installing different assemblies on the proposed versatile
platform. Kakogawa and Ma [12] presented motion analysis
of an in-pipe robot with screw drive mechanism. Yanheng
et al. [13] proposed a flexible steering mechanism in order
to move through the branches of the pipes. Although they

1Multifunctional Mobile Units

investigated the curvature shape and direct pipes in this
paper, however dynamics of the system is not extracted.
In order to cancel the destructive effect of external distur-
bances and parametric uncertainties, it is also necessary to
equip the designed robots with an active control.

Investigations about controlling the in-pipe inspection
robots are so limited. Most controlling researchers have
focused on mobile robots. Pyrkin et al. [14] introduced
“consecutive compensator” control approach and an exam-
ple of mobile robot with computer vision is considered here
in order to indicate the efficiency of the proposed approach.
Pitangaet al. [15] presented a new synthesis methodology
based on model predictive control (MPC) which is applied
to a three-wheeled omnidirectional mobile robot seeking to
follow pre-established trajectories. In the field of in-pipe
robots, Amir H.Heidariet al. [16] designed and developed
a screw robot for inspection of in pipe lines in presence of
fluid. They extracted the differential equation of the system.
Afterwards the robot is controlled with fuzzy-logic based
control strategy. Hao-jie Zhang et al. [17] proposed an itera-
tive linear quadratic regulator (ILQR) method for trajectory
tracking control of a wheeled mobile robot system. The pro-
posed scheme involves a kinematic model of linearization
technique, a global trajectory generation algorithm and tra-
jectory tracking controller design. H. Lang [18] also used
LQR optimizer tool for the mobile robots. All of the men-
tioned screw based inspection robots have a constant pitch
rate which can be promoted by adding the possibility of
obstacle avoidance using a steerable angle.

According to the literature, it can be seen that no research
is devoted to an in-pipe inspection robot of type screw
motion by which the pitch rate could be controlled by the
aid of steerable wheels. The robot which is proposed in this
paper is a screw in-pipe inspection robot equipped by in
wheels that converts a screw motion to linear one and its
pitch rate is controllable. Based on the delivered literature
of the paper, the obstacle avoidance procedure of in-pipe
inspection robots is either ignored in previous proposed
models or this importance is done passively and by chang-
ing the path of the robot. The disadvantage of this traditional
remedy is that the obstacle cannot be by-passed locally and
in an online way. Also a significant controlling effort was
required in previous researches to change the path and real-
ize this obstacle avoidance while in the proposed model of
screw in-pipe robot the obstacle avoidance can be realized
without changing the planned path and in an online way
with the least amount of energy consumption just by chang-
ing the pitch rate of the robot. Secondly according to the
existing literatures about the in-pipe robots, no optimization
is implemented in controlling procedure of previously deliv-
ered in-pipe robots. In this paper the closed loop control of
the proposed in-pipe robot is modified by the aid of a strong
optimization tool of LQR by which not only the accuracy of
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tracking is satisfied but also the required controlling effort
is minimized using the least amount of calculation which is
suitable for online and real time applications.

To meet the mentioned goal, a novel steerable in-pipe
robot is designed and its related kinematics and dynam-
ics are extended. Afterwards, in order to control the robot
in an optimal way, so the state space of the system is lin-
earized around its operating point and the related states are
controlled using LQR approach. The considered objective
function is a compromise between accuracy and energy con-
sumption. In the next section the kinematics and dynamics
of the new proposed in-pipe robot is developed. Afterward
in section three the optimal control scheme is presented. In
order to verify the efficiency of the proposed robot and also
checking the accuracy and optimality of the designed con-
troller, some simulation studies are provided in section four
using MATLAB software. The validity of the mentioned
claims is proved by the aid of some comparative and ana-
lytic simulation scenarios. It is shown that by the aid of
the proposed system and its related optimal controller, it is
possible to control the robot through the pipelines with a
controllable pitch rate, good accuracy and minimum amount
of consumed energy. All of the kinematic and kinetic simu-
lations are verified finally by modeling the robot in ADAMS
and comparing the related profiles. The good agreement
between the mentioned results shows the correctness of
modeling and simulation of the robot in MATLAB and
proves the related efficiencies.

2 Kinematics and Dynamics Modeling

2.1 Kinematics

In order to control the proposed in-pipe robot, it is first
required to model the system and extract the related kine-
matic and kinetic formulations. In the previous researches
the system was modeled with just one input as the propul-
sion force and two states [19]. In this paper in order to
provide the obstacle avoidance ability by the aid of its vari-
able pitch rate, one extra input is considered as the steering
angle of the wheels. Thus, the first input is the torque of
the main motor which provides the propulsion force and the
second input is the torque of the motor which controls the
steering angle of the robot. R indicates the length between
the center of the robot and the internal wall of the pipe.
Figure 1 indicates a simple scheme of the proposed in-pipe
inspection robot.

Here by the aid of rotation of the rotor section, the stator
will have a translational movement through the pipe. It can
be seen from Fig. 2 that b is the length between the center
of the robot and the center of the wheel, r is radius of the
wheels and it can be easily shown that R = (r + b). ∅ is the

angle of the hull, θ is the angle of the rotation of the wheels
and α is the inclined angel of the wheels.

The front wheel of the proposed system is steerable using
active actuator in contrast with the one which is introduced
in [19]. So the angle of the front wheel (α) is variable.
Thus just using the proposed active steerable wheel can help
us to have variable pitch rate and provide the capability
of obstacle avoidance. Thus the new proposed system has
two degrees of freedom which should be controlled using a
multivariable controller with four states

First of all, a translation matrix is required as Tz in Eq. 1
that translates the local frame attached to the robot to the
global reference frame attached to the ground. If we con-
sider vector o=[0,0,0,1] which indicates the coordinate of
the robot frame at t=0, the vector position of the center of
the robot can be extracted respect to the angle of hull (∅).
The last element of this vector should be considered to pro-
vide the required dimensional consistency for the matrix
multiplication. So the coordinate of the robot will be as H s
which is shown in Eq. 2.

Tz =

⎡
⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 Rφ tan(α)

0 0 0 1

⎤
⎥⎥⎦ (1)

Hs = Tzo =

⎡
⎢⎢⎣

0
0

Rφ tan(α)

1

⎤
⎥⎥⎦ (2)

Considering ẋ.ẏ.ż and ∅̇ as the work space parameters
and α̇ and ∅̇ as the joint space parameters the Jacobian
matrix in straight pipes can be presented as Eq. 3:

⎧⎪⎪⎨
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y
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z
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=

⎡
⎢⎢⎣
0 0
0 0
0 R tan(α)

0 1

⎤
⎥⎥⎦
{ .

α
.

φ

}
(3)

2.2 Dynamics

Dynamics of the proposed in-pipe robot is extracted in this
paper as two coupled differential equations relevant to gen-
eralized coordinates (α and ∅). The equations of the system
are derived by the Lagrangian approach. Related Lagrangian
function is as Eq. 4:

L = T − V (4)

where T and V denote the kinetic energy and potential
energy due to gravitational forces, respectively. The total
kinetic energy will be as Eq. 5:

T = Tmotor + THull + �(Tw1 + Tw2) (5)
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Fig. 1 An in-pipe screw robot
[19]

where Tmotor , THull , Tw1 and Tw2 show kinetic energy of the
motor, hull, wheels around the pipe axis and wheels around
legs, respectively. �denotes the number of steering wheels.
In Eq. 5 the kinetic energy of the passive straight wheels is
ignored. The parameters of Eq. 5 are defined in Eq. 6.

Tmotor = 1

2
Mm

.

z2

THull = 1

2
Mh

.

z2 + IB

.

φ2

Tw1 = 1

2

{
(mr2+IWZ)

(
bCα

b+r

)2

+(mr2+IWX)S2
α

}
.

φ
2

Tw2 = 1

2
�Iwheel

.
α
2 (6)

In Eq. 6 Cα and Sα denote cos (α) and sin(α), Iwz, Iwx

are the wheel moment of inertia around the coordinate
attached to the pipe along z and x axis respectively. Also,
Iwheel and IB are the wheel moment of inertia around the
leg and polar moment of inertia of the hull respectively Also
Mm, Mh and m are the mass of the motor, mass of the hull
and mass of the wheel respectively. So according to Eq. 6
total kinetic energy can be calculated as Eq. 7.

T = 1

2

{(
(b + r)

Sα

Cα

)2

αM + �b2αm + IB

}
.

φ
2

+1

2
�Iwheel

.

α2 (7)

where

αM =
(

Mm + Mh + �m + �
IWX

r2

)

αm =
(

m + IWZ

r2

)
(8)

Moreover, an infinitesimal change in the potential energy
of the robot due to the gravity during the motion along the
vertical pipes can be calculated as:

dV = (Mm + Mh + �m)(b + r)gdφ tan(α) (9)

Now considering the angle of rotation of the hull (∅) and
the variation of the wheels’ angle (α) as the generalized
coordinates, the corresponding Lagrangian equation can be
written as:

d

dt

(
∂L

∂
.
qi

)
− ∂L

∂qi

= Qi (10)

where Qi are generalized forces which can be identified as
Eq. 11 for the present work:

Q1 = Tm − Tf

Q2 = Ts (11)

In Eq. 11 Tm is the torque generated by the motor rele-
vant to the hull, Tf is the resisting torque due to the friction
between the wheels and their axles and wall and Ts is the
torque generated by motor relevant to the steering wheels.

Since the friction plays an important roll toward propul-
sion of the robot within the pipe, providing enough force by

Fig. 2 a Frontal view of the
robot in a pipe. b Differential
element of the motion of the
wheel
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the axles is extremely significant in order to avoid slipping.
Lack of friction at the contact point between the wheels
and the pipe’s wall leads to slipping the wheels which dis-
turbs the safe and stable control of the robot. The slippage
constraint of the wheel can be expressed as Eq. 12 (using
Coulomb friction law):

fsn.max = μFN (12)

In Eq. 12 μ is the friction coefficient, FN denotes the
normal force exerted by the axles and fsn.max is the maxi-
mum static friction force. In the case that the system needs
a friction force more than fsn.max in order to avoid the slip-
page, it is required to increase the amount of Normal force
of the legs using the harder springs. So it can be shown that
the required friction torque Tf is as:

Tf = �bμFN sin(α) (13)

where � is the number of active wheels.
By substituting Eq. 13 in Eq. 11 the generalized force Qi

can be computed as:

Q1 = Tm − �μbFN sin(α)

Q2 = Ts (14)

Finally, by substituting Eq. 14, in Eq. 10 the dynamic
differential equation of the system can be extracted as:

..

φ =
λRg(1 + tan2(α))

.
α − 2R2αM

Sα

C3
α

.
α

.

φ − �μbFNSα

�αmb2 + IB + R2αM tan2(α)

+ Tm

�αmb2 + IB + R2αM tan2(α)
(15)

..
α =

(
R2αM

(
tan(α) + tan3(α)

)
�Iwheel

)
.

φ2

−
(

λRg(1 + tan2(α))

�Iwheel

)
.

φ + Ts

�Iwheel

(16)

where λ is the summation of all masses and g is gravity
acceleration

It can be seen that by considering the steer ability of the
wheels and increasing the DOFs of the system, the num-
ber of differential equations of the system increases to two.
In order to solve the mentioned coupled equations, extract-
ing the time responses of the DOFs and finally controlling
the system, it is required to rewrite the equations in the
form of state space. Considering

(∅.∅̇.α.α̇
)
as the states of

the proposed inpipe robot, corresponding state space can be
provided as:

.
x1 = x2

.
x2 =

λRg(1 + tan2(x3))x4−2R2αM
Sx3
C3

x3

x4x2−�μbFNSx3

�αmb2 + IB + R2αM tan2(x3)

+ Tm

�αmb2 + IB + R2αM tan2(x3)
.

x3 = x4

.
x4 =

(
R2αM

(
tan(x3) + tan3(x3)

)

�Iwheel

)
x2
2

−
(

λRg(1 + tan2(x3))

�Iwheel

)
x2 + Ts

�Iwheel

(17)

3 Control Design

Two strategies are considered in this paper to control the lin-
earized state space of the designed in pipe inspection robot
and these two strategies are compared with each other. The
first approach is State Vector Feedback Control (SVFC)
based on Pole placement and the second one is an opti-
mal controller according to LQRmethod. The first approach
guaranties the dynamic response of each state according to
a desired pole while the second one, controls the states in an
optimal way. Both strategies are employed in this paper after
in order to control the new designed in pipe inspection robot
after linearization of the system about its operating point. It
will be shown that this linearized optimization is applica-
ble while its domain of attraction is large enough. So this
method provides a fast and efficient closed loop optimiza-
tion. In this section two mentioned controllers are designed
for the in-pipe inspection screw robot with controllable
wheels’ angle.

3.1 Linearization Process

most of the optimal nonlinear methods of controlling strate-
gies like Hamilton-Jacobi–Bellman are too complicated and
have extremely heavy calculations which are not proper
for online and real-time application of the present robot.
Employing the proposed linear optimal controlling strategy
of the paper not only provides an exact closed loop opti-
mal control for the studied robot, but also is simple and fast
enough which could be implemented for most of the online
and real time applications with the least costs and using sim-
ple electronic boards. Similar strategy is also employed for
other robotic systems [20].

As it was mentioned, for both of controlling approaches
linearization of the state space is required. The linearized
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state space of the designed robot about its operating point
can be extracted as below:
.

X = AX + Bu

y = CX + Du (18)

where

A = ∂fi

∂Xj

=

⎡
⎢⎢⎢⎣

0 1 0 0

0 0 �FN bμ(0.014R2αM−0.99)
0.007R2αM+�αmb2+IB

1.007Rλg

0.007R2αM+�αmb2+IB

0 0 0 1
0 1.007Rgλ

�Iwheels
0 0

⎤
⎥⎥⎥⎦(19)

B = ∂fi

∂u
=

⎡
⎢⎢⎣

0 0
1

0.007R2αM+�αmb2+IB
0

0 0
0 1

�Iwheels

⎤
⎥⎥⎦ (20)

Considering two sensors installed on the robot to evaluate
the angular position of ∅ and α, the matrixes C and D will
be as:

C =
[
1 0 0 0
0 0 1 0

]
D = 0 (21)

It will be stated in the simulation section that the lineariza-
tion process is implemented about the operating point which
is ([∅̇.α.α̇])=([x2,x3,x4])=

([0, 5 ( π
180

)
, 0]), in this paper and

as it will be seen, it has a satisfying domain of attraction. As
the ∅ = x1 doesn’t appear in equations so the linearization
is not according to the full state of the system.

3.2 Pole Placement Approach

Pole placement method is one of the classic control theo-
ries which realizes the desired performance of the states by
controlling the poles of its dynamic. The system in Pole-
Placement approach should be controllable [21] and it is
shown in Eq. 22 that the system of this paper is controllable.
Considering the Ackerman formulation, the desired charac-
teristic equations can be defined as 	d = (s − λ1)(s −
λ2)....(s − λn)for which the desired poles (λ) of the system
can be realized since the system is controllable as follow:

rank
([

B AB A2B A3B
]) = 4 (22)

As it can be seen in Eq. 22 the rank of the controllability
matrix is full (4) which shows its controllability.

According to the inputs of the system which is based on
Eq. 23, the new state space will be as Eq. 24:

u = −KP−P .X =
[

K11 K12 K13 K14

K21 K22 K23 K24

]
⎡
⎢⎢⎣

φ
.

φ

α
.
α

⎤
⎥⎥⎦ (23)

where KP−P is the controlling gain related to Pole-
Placement approach.

.
x =Ax+Bu=(A−Bkp−p)x =

⎡
⎢⎢⎢⎢⎢⎣

∧
A11

∧
A12

∧
A13

∧
A14

∧
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∧
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∧
A23

∧
A24

∧
A31

∧
A32

∧
A33

∧
A34

∧
A41

∧
A42

∧
A43

∧
A44

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎣

φ
.

φ

α
.
α

⎤
⎥⎥⎦

(24)

where

∧
A11 = 0

∧
A12 = 1

∧
A13 = 0

∧
A14 = 0

∧
A21 = − k11

0.007R2αM + �αmb2 + IB

∧
A22

= − k12

0.007R2αM + �αmb2 + IB

∧
A23 = �FNbu(0.014R2αM − 0.99)

0.007R2αM + �αmb2 + IB

− k13

0.007R2αM + �αmb2 + IB

∧
A24 = 1.007Rλg

0.007R2αM + �αmb2 + IB

− k14

0.007R2αM + �αmb2 + IB

∧
A31 = 0

∧
A32 = 0

∧
A33 = 0

∧
A34 = 1

∧
A41 = − k21

�Iwheels

∧
A42 = − k22

�Iwheels

− 1.007Rgλ

�Iwheels

∧
A43 = − k23

�Iwheels

∧
A44 = − k24

�Iwheels

Now for determining the feedback gain matrix (Kp−p) of
Eq. 23, the Eq. 25 should be solved and compared with the
desire equation (	d ).

∣∣∣∣
∧
λI − (A − BKP−P )

∣∣∣∣ =

∣∣∣∣∣∣∣∣∣∣∣∣

−
A11

−
A12

−
A13

−
A14

−
A21

−
A22

−
A23

−
A24

−
A31

−
A32

−
A33

−
A34

−
A41

−
A42

−
A43

−
A44

∣∣∣∣∣∣∣∣∣∣∣∣

(25)

where

−
A11 = ∧

λ
−
A12 = −1

−
A13 = 0

−
A14 = 0
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−
A21 = k11

0.007R2αM + �αmb2 + IB

−
A22 = ∧

λ

+ k12

0.007R2αM + �αmb2 + IB

−
A23 = −�FNbu(0.014R2αM − 0.99)

0.007R2αM + �αmb2 + IB

+ k13

0.007R2αM + �αmb2 + IB

−
A24 = − 1.007Rλg
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+ k14

0.007R2αM + �αmb2 + IB

−
A31 = 0

−
A32 = 0

−
A33 = 0

−
A34 = ∧

λ−1

−
A41 = k21

�Iwheels

−
A42 = k22

�Iwheels

+ 1.007Rgλ

�Iwheels

−
A43 = k23

�Iwheels

−
A44 = ∧

λ + k24

�Iwheels

And finally the controlling input of Eq. 23 which is calcu-
lated using a local linearization, will be implemented to the
original nonlinear system of the in pipe robot which results
in the following closed loop state space equation:

.
x = f (x) + g(x)uP−P

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x2
λRg(1+tan2(x3))x4−2R2αMSx3x4x2−�μbFNSx3

�αmb2+IB+R2αM tan2(x3)
x4(

R2αM

(
tan(x3)+tan3(x3)

)
�Iwheels

)
x2
2 −

(
λRg(1+tan2(x3))

�Iwheels

)
x2

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

+

⎡
⎢⎢⎢⎣

0 0
1

�αmb2+IB+R2αM tan2(x3)
0

0 0
0 1

�Iwheels

⎤
⎥⎥⎥⎦

×[−Kpole−placement .x]s (26)

The closed loop controlling block diagram of the men-
tioned approach is shown in Fig. 3:

As shown in Fig. 3 the block diagram of both controllers
are figured. It can be seen that based on the desired con-
trolling approach, the strategy of controlling can be easily
switched and the resultant gain can be fed to the State Feed
Back Control (SVFC). Selecting the proper controller is
decided by the aid of switching algorithm in an online way.
In this flowchart it can be seen that, first of all, in order to
tune the gains, “linear system” block is fed to the desired
controller according to the mentioned switcher center. For
the case in which there is no limitation on the input and just

the performance of the output is important based on some
desired poles, pole placement approach will be selected in
which the Ackerman formula needs to be solved, while for
the alternative approach of LQR, compromise will be per-
formed between the input and accuracy and Riccati equation
should be solved instead. At the same time with tuning the
gains and feeding the linearized matrixes to the controllers,
“Desire vector” signal is compared with “Feedback vec-
tor” and the resultant gained errors are fed to (SVFC) to be
employed for calculating the required inputs based on state
vector feedback controller. The calculated controlling input
will be then implemented to the “plant (In-pipe inspection
robot)” block finally through which the actual vector can be
extracted by the sensors and be used for the feedback signal
to complete the controlling loop. It should be noticed that
the linearization process is based on Eqs. 19 and 20.

About the stability of the designed closed loop robot it
should be considered that according to the literatures and
references, closed loop systems which are controlled using
LQR are always stable with a strong gain margin and phase
margin [22]. Also it will be proved in the simulation section
that, the domain of attraction of the closed loop system is
large enough to cover an acceptable workspace of the stud-
ied robot with an acceptable accuracy. However, for the
cases in which the robot is supposed to move through a long
distance far from its operating point and more accuracy is
expected by the robot it is possible to refresh and update
the operating point of the system around which lineariza-
tion is occurred. This is possible simply using the feedback
signals of the sensors and a simple calculation which is
extremely and significantly simpler than other nonlinear
optimal controlling strategies [23].

3.3 LQR Approach

Again in this method it is supposed that all of the states are
available and can be measured exactly through the sensors
or observer. To solve the problem and produce the opti-
mal input as mentioned in Eq. 27, the system should be
controllable like Pole-Placement approach which is proved
in Eq. 22. The controlling input of the state variable feed-
back regulator is the same as Eq. 23 except that the gain
Kp−p should be replaced by KLQR, which its calculations
is explained as below. Thus the input is:

u = −KLQR.X (27)

where KLQR is the state feedback gain matrix which should
be defined using LQR approach.

In this method the optimization process of LQR should be
implemented based on a specific objective function. Consi-
dering the fact that accuracy and energy consumption are con-
tradictory, the objective function is considered as below to
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Fig. 3 Block diagram of the controlling system

provide a compromise between error and input to realize the
best accuracy using the least energy consumption:

J = 1

2

∫ ∞

0

(
XT QX + uT Ru

)
dt

=
∫ ∞

0

⎛
⎜⎜⎝
[
x1 x2 x3 x4

]
Q

⎡
⎢⎢⎣

x1
x2
x3
x4

⎤
⎥⎥⎦+[Tm Ts

]
R

[
Tm

Ts

]
⎞
⎟⎟⎠ dt

(28)

where Q and R, are positive definite weighting matrixes. It
can be shown that the optimal controlling gain by which the
mentioned objective function can be minimized should be
calculated as follow:

K = R−1BT S

=
[
R11 0
0 R22

][
0 1

�αmb2+IB+0.007R2αm
0 0

0 0 0 1
�Iwheels

]
s (29)

where S can be obtained by solving the following Riccati
equation.

AT S + SA + Q − SBR−1BT S =

⎡
⎢⎢⎢⎢⎣

0 0 0 0
1 0 0 1.007Rgλ

�Iwheels

0 �FNbu(0.014R2αM−0.99)
0.007R2αM+�αmb2+IB

0 0

0 1.007Rλg

0.007R2αM+�αmb2+IB
1 0

⎤
⎥⎥⎥⎥⎦

s

+s

⎡
⎢⎢⎢⎣

0 1 0 0

0 0 �FNbu(0.014R2αM−0.99)
0.007R2αM+�αmb2+IB

1.007Rλg

0.007R2αM+�αmb2+IB

0 0 0 1
0 1.007Rgλ

�Iwheels
0 0

⎤
⎥⎥⎥⎦+ Q

−s

⎡
⎢⎢⎢⎣

0 0
1

0.007R2αM+�αmb2+IB
0

0 0
0 1

�Iwheels

⎤
⎥⎥⎥⎦R−1

[
0 1

�αmb2+IB+0.007R2αm
0 0

0 0 0 1
�Iwheels

]
s

(30)

And consequently the closed loop linearized state space
will be similar to Eq. 24 in which the gain Kp−p is substi-
tuted by KLQR:

.
x = Ax + Bu = (A − BKLQR)x (31)

The controlling block diagram of the mentioned method
is also similar to Fig. 3 in which the controlling gain K is

substituted by the aid of Eq. 29 and the mentioned calcula-
tions.

4 Simulation Results

Two scenarios are studied in this section. In the first sce-
nario the performance of the ordinary previous screw in pipe
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robots are compared with the new design of the steerable
proposed in-pipe robot in order to show the advantage of the
proposed mechanism to increase the maneuverability of the
robot especially during the obstacle avoidance. In the sec-
ond scenario two mentioned controlling strategies of pole
placement and LQR are compared to show the superiority
of LQR toward optimal controlling of the system. The main
characteristics of the studied screw based in pipe robot in
this paper and its related pipe specifications are mentioned
in Table 2.

As it was mentioned the first step of designing the
controller and implementing the LQR and Pole-Placement
approaches, is linearizing the system about its operating
point (linier controlling input with non-linear system), so
according to Eqs. 18 and 19 the linearized system will be:
.

X = AX + Bu

y = CX + Du (32)

where for the robot with the characteristics of Table 1 we
have:

A =

⎡
⎢⎢⎣
0 1 0 0
0 0 −94.78 673.05
0 0 0 1
0 −0.0002 0 0

⎤
⎥⎥⎦ B =

⎡
⎢⎢⎣

0 0
113.6 0
0 0
0 3333

⎤
⎥⎥⎦

C =
[
1 0 0 0
0 0 1 0

]
D = 0 (33)

4.1 Pole- Placement Approach

In order to employ the Pole-Placement approach, it is first
required to define the desired poles of the system as P
(Eq. 34) which provides a desired and stable response:

P = [−50 −49 −182 −10
]

(34)

These poles are real and negative to provide an over
damped response for the states of the system. Thus the
matrix KPole−Placement will be:

Kpole−placement =
[
18.660 0.066 −21.909 5.714
−0.718 −0.007 14.964 0.179

]

(35)

According to the above controlling gains, the linear
inputs of the Pole-Placement according to Eq. 23 will be as:

uPole−placement = −
[
18.660 0.066 −21.909 5.714
−0.718 −0.007 14.964 0.179

]

×

⎧⎪⎪⎨
⎪⎪⎩

x1
x2
x3
x4

⎫⎪⎪⎬
⎪⎪⎭

(36)

4.2 LQR Approach

The same procedure is performed for LQR approach.
According to Eq. 29 the matrix KLQR will be as:

KLQR =
[
2.261 0.018 −10.609 0.006
3.08 0.018 0.717 0.088

]
(37)

The controller is designed aiming to stabilize and track
the reference input, so the martices Q and R, are chosen as:

Q = CT C =

⎡
⎢⎢⎣
1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

⎤
⎥⎥⎦ R =

[
0.1 0
0 0.01

]
(38)

Table 1 The value of the
physical parameters of the
system

Physical properties of the system

Symbol Value Definition Unit

M 0.01 Wheel mass Kg

Mh 1 Hull mass Kg

Mm 1 Motor mass Kg

R 0.02 Wheel radius m

b 0.1 Leg length m

A 0.01 Robot’s Effective Cross Sectional Area m2

FN 15 The normal force of passive spring N

μ 0.2 Friction coefficient −
IB 10−4 Hull polar Moment of Inertia Kg.m2

IWZ, IWX 10−8 Wheel Moment of Inertia around the pipe axis Kg.m2

G 9.8 Gravity m

s2

� 3 Number of active wheels

Iwheel 2*10−8 Wheel Moment of Inertia around the leg Kg.m2
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which consequently results in the following optimal input:

uLQR = −
[
2.261 0.018 −10.609 0.006
3.08 0.018 0.717 0.088

]
⎧⎪⎪⎨
⎪⎪⎩

x1
x2
x3
x4

⎫⎪⎪⎬
⎪⎪⎭

(39)

4.3 Kinematics and Dynamics

As it was explained, the possibility of the obstacle avoidance
during the movement through the pipe is provided by the aid
of the proposed robot since the angle of the wheels are con-
trollable. Figure 4 compares the workspace movement of the
ordinary robot and the robot which is equipped by variable
wheels’ angle. This figure shows that the proposed robot of
this paper is able to by-pass an obstacle which is considered
in the inner surface of the pipe by changing the angle of its
wheels while the ordinary in pipe robot is collided with the
mentioned obstacle.

According to Fig. 4 it can be seen that, not only the obsta-
cle is bypassed using the proposed robot configuration, but
also a faster movement is provided for the new designed
robot since the pitch rate of the screw based in pipe robot is
also controllable with variable wheels’ angle. Since the sta-
bility of the robot is extremely dependent to the front wheel
by which the steering of the robot should be handled, col-
lision of the rear wheel with small obstacles could not be
important and it could be damped using a simple suspen-
sion system. Another advantage of the proposed mechanism
is providing a movement with variable speed without the
necessity of changing the rotational velocity of the main
joint motor.

Also the velocity of the robot center and its comparison
between the ordinary system and the proposed system with
variable angle can be seen in Fig. 5:

Fig. 4 Passing the obstacle by controlling the angle of the wheels

It can be seen that the velocity of the robot with variable
angle can be increased according to its related controlling
command while the velocity is constant for the system with
fixed wheels’ angle. Also, because the studied robot in this
paper travels in a straightforward pipe, its velocity along the
X and Y directions are zero and the main projection of its
velocity is along the Z axis.

The kinematic results of the joint space of the robot
and its comparison between the simple system and the new
proposed system can be observed in Fig. 6.

Figure 5 shows that however the angular velocity of the
first joint space which is related to the main screw rate of
the rotational part of the robot is roughly the same for both
systems, but the third state (α) of the joint space of the robot
can be independently controlled for the proposed system.
As a results this state which is related to the wheels’ angle
is constantly zero for the simple system while this angle is
monotonically increasing in the proposed controllable angle
system to by-pass the obstacle.

As mentioned above the system is steerable so, in Fig. 6
the comparison of the first and second states (∅∅̇) can be
observed between the fixed and variable wheels’ angle sys-
tems. It is noticeable that the system with variable angle is
considerably more compatible and flexible with tracking the
desired path with higher accuracy.

And finally Fig. 6 shows the response of the fourth state
(α̇). Since the angle is constant for the fixed angle system,
its derivative is also zero as expected while this state experi-
ences a short oscillatory behavior before its settling time as
a result of the nature of SVFC controller.

The inputs of the systems and their comparison between
variable and fixed angle systems are shown in Fig. 7. It’s
obvious from the Fig. 7 that the system with fixed angle
just needs one input while in the proposed model of vari-
able angle, two controlling input is required to control the
rotational angle of the main body and the angle of the

Fig. 5 The Z direction velocity of the robot center through the pipe
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Fig. 6 Responses of the joint space parameters

wheels simultaneously. Considering the fact that the trans-
lational movement of the robot with variable wheels’ angle
can be accelerated by the aid of its steering control, the
required torque of the robot with variable wheels’ angle is
considerably lower for a same displacement.

4.4 Control Results

As mentioned above, two types of controllers including of
LQR and Pole Placement are designed and examined in
order to track the robot along its desired path. In this section
both of the mentioned approaches are employed for a same
scenario in order to show the superiority of LQR toward
optimization of the system. The plant of both cases is the
new proposed in-pipe inspection robot with controllable
wheels’ angle.

The employed control parameters of the system for both
approaches are mentioned in Table 2.

As shown in Fig. 8 the desired path of the robot with
variable angle is a cylindrical path with variable pitch rate
and can be controlled according to Eq. 40:

Z = R∅tan(α) (40)

In order to compare the responses of the states using two
mentioned controlling approaches, a ramp input is consid-
ered as the desired input and so the desired state inputs of
x1 and x3 can be stated as a function of time with slopes
of 0.05 and 0.005 respectively. Thus, the equations of the
desired inputs are:

x1 = 0.05t (41)

x3 = 0.005t (42)

According to the controlling gains and the specifications
of Table 2 and Section 3 the actual path of the robot for both
cases are obtained as Fig. 8.

Fig. 7 Comparison of the
inputs for variable and fixed
angle system
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Table 2 The control
parameters Definition value

Desire Poles of Pole-placement [∅.∅̇.α.α̇]=[−50 , −49 , −182 , −10]

The controller gain (KPole−Placement) K1 = [8.1510 , −0.3989 , −16.7818 , 5.6070]

K2 = [ −0.5805 , −0.0121 , 2.5804 , 0.0668]

The controller gain (KLQR) K1 = [2.2618 , 0.0180 , −10.6091 , 0.0063]

K2 = [ 3.0803 , 0.0184 , 0.7177 , 0.0887]

First of all, it can be seen that using both of control-
ling approaches, the desired path which is a helical way
with variable pitch rate is realized thanks to steerable design
of the robot. Afterwards, it can be concluded that both
approaches have provided an acceptable accuracy since the
controlling gains are properly adjusted. However, it can be
seen that the LQR approach provides a faster tracking rather
than Pole-Placement, since the desired movement is real-
ized in this method during the finite simulation time but the
movement of the robot for the case in which the system
is controlled using pole placement approach is incomplete
during the mentioned time.

Each states of the robot and its comparison for two
controlling approaches can be seen as below:

Figure 9 indicate that the LQR controller has a bet-
ter response while not only the accuracy is slightly better,
but also its vibrating response at the first stages of the
simulation is less. By the other word, LQR has provided
slightly over damped responses since the responses of pole
placement approach is almost under damped. It should be
noticed here that the response of the pole placement is
underdamped despite of real negative poles which are con-
sidered as the desired poles of the system. This phenomenon
is contributed to the fact that the controlling input of the
linearized controller is implemented on the real nonlinear
system. However, it can be seen that despite of the fact

that both of LQR and pole placement approaches are lin-
ear controllers, but the response of LQR is more biased
to over damped response as a result of its proper error
optimization. Also as it will be seen later, the domain of
attraction of the system through which the employed lin-
earization is valid is sufficiently wide which shows the
applicability of this optimum controller for this nonlinear
system.

Figure 10 shows the domain of attraction of each con-
trolling approach. The linearization point should be speci-
fied according to operating point about which the robot is
expected to operate within mostly. It should be considered
that the original nonlinear system is linearized here about
([0,5( π

180 ),0]) and the employed linear controller has an
effective domain of attraction in where the controller is able
to realize the tracking successfully. It is proved in Fig. 10,
that the domain of attraction is sufficiently large which can
cover an acceptable workspace for the robot. However, the
mentioned operating point can be refreshed in some specific
time intervals in the cases for which the robot is supposed to
move through a long distance far from its calculated domain
of attraction.

The mentioned domain of attraction is compared in the
above figures. It can be seen that the mentioned effective
time interval of LQR is about 90sec while this value is about
161sec for the second approach. It is contributed to the fact

Fig. 8 Path of the robot on the
inner wall of the pipe using two
controlling approaches
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Fig. 9 a Response of x1 (φ) b Response of x3 (α)

Fig. 10 a Domain of attraction of first state (∅) b Domain of attraction of third

Fig. 11 a Comparison of first input (Tm) b Comparison of second input (Ts)
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that the imaginary part of the poles related to LQR are not
zero while the poles related to the desired poles of the pole
placement approach are selected purely real. This imagi-
nary part causes a harmonic response with higher frequency
in X. Considering the fact that the employed controlling
strategies for both cases of LQR and Pole-Placement are
state vector feedback and thus the input is a function of
the states, U=-KX, it can be concluded that according to
Eq. 26 the nonlinear functions of f (x) and g(x) which are

functions of X will be also harmonic. This fact causes
increasing the error of truncation of Tylor series through
linearization approximation of the model since the higher
order of the series are also nonlinear harmonic functions and
thus are not zero and could not be eliminated. Since the fre-
quency in the LQR is nonzero, the error of eliminating the
mentioned items in the Tylor series increases respect to pole
placement and cases decreasing the domain of attraction of
the system controlled by LQR:

PP.P = [−50 −49 −182 −10
]

PLQR = [-2.02 -1.03+1.57i -1.03-1.57i -0.016]

}
→
{

ωP.P ≈ 0
ωP.P ≈ 1.57

∂nf

∂xn
(LQR) >>

∂nf

∂xn
(P .P ); n > 1

(43)

So the domain of attraction of the system can be esti-
mated about 3meters for LQR and about 7meters for pole
placement which are large enough to ensure the applicabil-
ity of linearizing process and is achieved by LQR faster that
pol placement.

Now in order to demonstrate the optimality of LQR and
comparing its energy consumption respect to pole place-
ment approach, the kinetic results of controlling inputs are
extracted which can be seen as follow:

Fig. 12 a Error of first state (ϕ) b Error of second state (α)

Again here Fig. 11 indicate that, not only the net value
of inputs of LQR controller is less than pole placement,
but also its semi-over damped response shows its superior-
ity respect to pole placement toward controlling a nonlinear
system like in-pipe robot.

As mentioned in Eq. 28 the LQR is designed with the aim
of providing the optimality of the objective function, so the
objective function is calculated here during the simulation to
compare this cost function between these two approaches.

JLQR = 1

2

∫ ∞

0

(
XT QX + uT Ru

)
dt =

∫ ∞

0

⎛
⎜⎜⎝
[
x1 x2 x3 x4

]
Q

⎡
⎢⎢⎣

x1
x2
x3
x4

⎤
⎥⎥⎦+ [ Tm Ts

]
R

[
Tm

Ts

]
⎞
⎟⎟⎠ dt = 158246446.80 (44)

JPole−Placement= 1

2

∫ ∞

0

(
XT QX + uT Ru

)
dt =

∫ ∞

0

⎛
⎜⎜⎝
[
x1 x2 x3 x4

]
Q

⎡
⎢⎢⎣

x1
x2
x3
x4

⎤
⎥⎥⎦+[ Tm Ts

]
R

[
Tm

Ts

]
⎞
⎟⎟⎠ dt =3999219787.46

(45)
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Fig. 13 a response of x1 b response of x3

So it is obvious in Eqs. 44 and 45 that the objective
function in LQR approach is considerably less as it was
expected which verifies the optimality of this approach and
its superiority in minimizing the error and energy.

Also the states’ error of the controllers during the track-
ing of the robot is compared for two cases in the following
figure:

It is obvious from Fig. 12 that despite of the accept-
able accuracy of both controllers which is of order10−3, but
again the integral of tracking error during the simulation is
considerably decreased for the system which is controlled
by the aid of LQR

In order to show the robustness of LQR approach, in
Fig. 13, there is a comparison between LQR and feedfor-
ward control method for tracking a desired path of ((x1d =
0 • 5t and x3d = 0 • 005t + (5π/180))) in presence of
disturbance of sin(t).

It is obvious that LQR controller tracks the desired path
accurately, while in the feedforward approach significant
deviation can be observed which shows the robustness of
the proposed controlling algorithm compared to traditional
computed torque method

5 Verification

In order to verify the validity of MATLAB results and prove
the efficiency of the proposed in-pipe robot, the pro-
posed system is modeled in ADAMS and the related kine-
matic and kinetic results are compared with MATLAB.
Figure 14 shows the modeled screw based in-pipe robot in
ADAMS.

The black section in the figure is related to the stator part
of the robot while the red one shows the rotor of the system
Also, in Table 3 ADAMS simulation details are shown to
depict the designed parameters of simulation

As mentioned about steerability of the proposed robot in
this paper, the new designed model of the steer mechanism
together with related gears is shown in Fig. 14 It can be seen
that the second motor with bevel gears can change the angle
of wheels (Fig. 15).

In Sections 3–4, both of kinematic result of joint space
and work space and also their related kinetic responses were
figured. Here the mentioned results are derived again in
ADAMS to check the validity of the simulation Fig. 16 com-
pares the workspace output of kinematic results between

Fig. 14 Model of the proposed
in-pipe robot in ADAMS
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Table 3 Parameters in ADAMS

Definition Value

Coulomb friction On

Static coefficient 0.3

Dynamic coefficient 0.2

Stiction Transition 0.1

Friction Transition 1

Fig. 15 Designed steer mechanism of the robot

MATLAB and ADAMS for the joint space input of Fig. 6
with variable wheels’ angle.

Comparison of position and velocity of the robot
workspace output shows the good compatibility of the
results between MATLAB and ADAMS. This good com-
patibility of the response trends proves the correctness
of modeling and simulating the robot in MATLAB. The
small deviation and slope difference in the response of the
ADAMS profile respect to MATLAB is related to the para-
metric uncertainties like flexibility of the legs, frictional
condition and etc. which are modeled in ADAMS and are
ignored in MATLAB simulations.

6 Conclusion

A new mechanism of in-pipe inspection robot was designed
and controlled in this paper based on screw movement
which is steerable and its wheels’ angle are controllable.
All of the related kinematics and kinetics formulation of
the proposed robot were derived. Afterward, the robot was
controlled using two strategies of pole placement and LQR.
The superiority of the new proposed in pipe robot respect to
previous ordinary types was shown by the aid of a compara-
tive simulation study. It was seen that the proposed steerable
robot has a better maneuverability and especially it is able
to successfully by-pass a predefined obstacle by controlling
its wheels’ angle and its pitch rate. Also it was seen that this
feature can provide a movement of the robot with control-
lable pitch rate which results in variable speed movement
of the robot without changing the motor speed of the main
rotational joint of the robot.

Afterwards two kinds of controllers were designed and
implemented on the robot including pole placement and
LQR. It was seen that however the accuracy of both con-
trollers are acceptable and their errors are of order 10−3 but

Fig. 16 a the comparison of center position. b the comparison of center velocity
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closed loop optimal controller of LQR can offer more bene-
fits for our plant. It was shown that using LQR approach not
only provides an optimal closed loop controlling system by
which higher accuracy and faster response can be achieved
using less power, but also its compatibility with nonlinear
systems is considerably better since it can control the states
with semi- over damped response with a significantly wide
range of domain of attraction. Also the performance of the
proposed controlling strategy was compared to simple tradi-
tional nonlinear controller of computed torque method and
it again the robustness and optimality superiority of the pro-
posed controller was confirmed. Analyzing the domain of
attraction of the employed controllers also showed that this
range is satisfactorily wide to ensure us of applicability of
this controller for the proposed nonlinear in pipe robot. Thus
the efficiency of the designed robot and also controller were
verified using analytic simulations and it was proved that a
considerable improvement can be implemented on the screw
based in pipe robots using the mentioned proposed struc-
ture while all of the states’ response can be successfully
controlled by the aid of the proposed optimal controller to
realize the robot trajectory with the best accuracy and the
least power consumption. At the end the validity of all of
the kinematic and kinetic result were verified by modeling
the proposed robot in ADAMS and comparing the results.
The acceptable compatibility of the program files proved the
correctness of modeling and simulating the robot.
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